Blowup for biharmonic Schrödinger equation with critical nonlinearity
نویسندگان
چکیده
منابع مشابه
Forced nonlinear Schrödinger equation with arbitrary nonlinearity.
We consider the nonlinear Schrödinger equation (NLSE) in 1+1 dimension with scalar-scalar self-interaction g(2)/κ+1(ψ*ψ)(κ+1) in the presence of the external forcing terms of the form re(-i(kx+θ))-δψ. We find new exact solutions for this problem and show that the solitary wave momentum is conserved in a moving frame where v(k)=2k. These new exact solutions reduce to the constant phase solutions...
متن کاملAnalytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity
Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...
متن کاملStatistical mechanics of a discrete Schrödinger equation with saturable nonlinearity.
We study the statistical mechanics of the one-dimensional discrete nonlinear Schrödinger (DNLS) equation with saturable nonlinearity. Our study represents an extension of earlier work [Phys. Rev. Lett. 84, 3740 (2000)] regarding the statistical mechanics of the one-dimensional DNLS equation with a cubic nonlinearity. As in this earlier study, we identify the spontaneous creation of localized ex...
متن کاملDamped Wave Equation with a Critical Nonlinearity
We study large time asymptotics of small solutions to the Cauchy problem for nonlinear damped wave equations with a critical nonlinearity { ∂2 t u+ ∂tu−∆u+ λu 2 n = 0, x ∈ Rn, t > 0, u(0, x) = εu0 (x) , ∂tu(0, x) = εu1 (x) , x ∈ Rn, where ε > 0, and space dimensions n = 1, 2, 3. Assume that the initial data u0 ∈ H ∩H, u1 ∈ Hδ−1,0 ∩H−1,δ, where δ > n 2 , weighted Sobolev spaces are H = { φ ∈ L; ...
متن کاملSingular Solutions of the Biharmonic Nonlinear Schrödinger Equation
We consider singular solutions of the L 2-critical biharmonic nonlinear Schrödinger equation. We prove that the blowup rate is bounded by a quartic-root, the solution approaches a quasi–self-similar profile, and a finite amount of L 2-norm, which is no less than the critical power, concentrates into the singularity. We also prove the existence of a ground-state solution. We use asymptotic analy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Zeitschrift für angewandte Mathematik und Physik
سال: 2018
ISSN: 0044-2275,1420-9039
DOI: 10.1007/s00033-018-0922-0